24x^2+8x-64=0

Simple and best practice solution for 24x^2+8x-64=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 24x^2+8x-64=0 equation:



24x^2+8x-64=0
a = 24; b = 8; c = -64;
Δ = b2-4ac
Δ = 82-4·24·(-64)
Δ = 6208
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{6208}=\sqrt{64*97}=\sqrt{64}*\sqrt{97}=8\sqrt{97}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-8\sqrt{97}}{2*24}=\frac{-8-8\sqrt{97}}{48} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+8\sqrt{97}}{2*24}=\frac{-8+8\sqrt{97}}{48} $

See similar equations:

| (x-9)/2=27-x | | -14x+28+6=-44 | | (x-9)/3=27-x | | 17-g=11 | | 9t=-6=10t | | -15+x/3=-26 | | -8-10d=-8-3d | | x•5=4 | | (6x+4)+(2x+16)=180 | | -61=-1-5x | | 2(x-4)+1/2x+7=3x-5x+27-10 | | -2b+5=-17 | | 7z+6=6z | | 12x+17=10x-2 | | 4(x-1)^2+16=0 | | 2x-4+1/2x+7=3x-5x+27-10 | | -7(x+6)+2=-6x-(1+x) | | –5x=–40+3x | | 5(x-2)-4(5x-3)=17-12x | | 16+3x=4x-5 | | 1=x/4+2 | | -7×-3=2-7x-5 | | 5×a=20÷2 | | -3/4h+9h=15 | | 2n+15+5n+39=180 | | -37+x=3(x-7) | | -2(x-5)+3=-2x+14 | | -3-(8x+2)=11 | | 2(5-5k)=26-2k | | 3x+8=-6x+80 | | 5(6-6x)=-3(2x+6) | | -14+2n=6n-5(4n+6) |

Equations solver categories